发自己的语
本文大多数参考 SICP
阴阳大法
一个语言的解释器,就是一个 eval 函数,就是求值函数:
- 输入: 一个表达式
s-exp
- 输出: 一个表达式
s-exp
这个解释器的核心就是 apply
和 eval
之间的互递归调用。
原始类型
原始类型是一个 s-exp
,求值就是 s-exp
本身。包括:整数,浮点数,字符串。例如
1 => 1
1.2 => 1.2
"abc" => "abc"
这个规则看上去很简单,但是很重要,他是递归求值的终止条件。也就是说,
eval
函数碰到这些原始类型的 s-exp
,不会递归调用 apply
。
根据这个规则,我们写一个函数
(define true #t)
(define false #f)
(define (eval exp env)
(cond ((self-evaluating? exp) exp)
(else (error "Unknown expression type -- EVAL" exp))))
(define (self-evaluating? exp)
(cond ((number? exp) true)
((string? exp) true)
(else false)))
我们运行一下这个函数。首先我们需要安装一个 scheme 解释器,参考 https://github.com/cisco/ChezScheme 语言参考 http://www.scheme.com/tspl4/
Chez Scheme Version 9.4
Copyright 1984-2016 Cisco Systems, Inc.
> (load "eval0.scm")
> (eval 1 '())
1
> (eval 1.2 '())
1.2
> (eval "abc" '())
"abc"
> (eval (list 1 2 3) '())
Exception in error: invalid message argument (1 2 3)
Type (debug) to enter the debugger.
恭喜你,一个解释器的雏形开始了。这里有一个开发原则,“永远有一个可以工 作的版本”。我经历过两种开发模式。
- 写了一天的代码,从来没有编译运行过。然后花三天去调试。
- 写几分钟的代码,然后立即调试。循环往复,每次增加功能一点点。
第一种模式下,大多数情况是,我自己思路不很清晰,模块还没有分解到足够细 致,所以一边写代码,一遍划分模块。
第二种模式下,我已经思路很清晰了,代码模块也很清晰了,尤其是模块划分的 颗粒度足够细致,脑子里面已经有具体的迭代步骤了。这种模式下,开发效率高 一些。
可以看到,(eval (list 1 2 3) '()
的时候,出现错误。这里也有一个开
发原则,“测试你的每一行代码”。可以看到,这几个简单的测试,覆盖了刚刚写
的所有代码。
开发初期,保证代码的测试覆盖率相对容易。这个时候,最好配合自动回归测试, 保证以后代码的覆盖率。如果开发初期没有把自动化测试做好,到了开后中后期, 在回过头来想保证代码的测试覆盖率,难度就十分大了。
好了,我们继续迭代开发我们的解释器。
quote
这个规则也是一个终止条件。如果一个 s-exp
是一个 list
,第一个元素
是 quote
,第二个元素任何一个 s-exp
X,那么求值结果就是 X 。
(quote 1) => 1
(quote 1.2) => 1.2
(quote "abc") => "abc
(quote (1 2 3)) => (1 2 3)
(quote a-symbol) => a-symbol
(quote quote) => quote
s-exp
中有一个重要的数据类型,就是 symbol 。 quote 可以得到 symbol
本身。
(define (eval exp env)
(cond (......
((quoted? exp) (text-of-quotation exp))
......
(else (error "Unknown expression type -- EVAL" exp))))
我们看看 quoted?
和 (text-of-quotation)
怎么实现的?
(define (quoted? exp)
(tagged-list? exp 'quote))
(define (text-of-quotation exp) (cadr exp))
(define (tagged-list? exp tag)
(if (pair? exp)
(eq? (car exp) tag)
false))
看看运行结果
> (load "eval1.scm")
> (eval '(quote 1) '())
1
> (eval '(quote 1.2) '())
1.2
> (eval '(quote "hello") '())
"hello"
> (eval '(quote a-symbol) '())
a-symbol
> (eval '(quote quote) '())
quote
eval1.scm
的完整内容如下
(define true #t)
(define false #f)
(define (eval exp env)
(cond ((self-evaluating? exp) exp)
((quoted? exp) (text-of-quotation exp))
(else (error "Unknown expression type -- EVAL" exp))))
(define (self-evaluating? exp)
(cond ((number? exp) true)
((string? exp) true)
(else false)))
(define (quoted? exp)
(tagged-list? exp 'quote))
(define (text-of-quotation exp) (cadr exp))
(define (tagged-list? exp tag)
(if (pair? exp)
(eq? (car exp) tag)
false))
一个好的程序风格是,多写一些小的函数,然后组合这些函数。函数都有名字,
可以描述自己的作用。例如 text-of-quotation
。其实这个函数本质上和
cadr
没有任何区别。但是在逻辑层次上,text-of-quotation
是更加高层
的函数,cadr
是更加底层的函数。这种逻辑层次的划分,可以提高程序的可
读性。
if
支持条件表达式,输入 s-exp
是一个 list ,有四个元素:
- 第一个元素是
if
,表明是一个条件表达式。 - 第二个元素是判断条件
<C>
- 第三个元素是
<T>
为真的时候,s-exp
的求值结果。 - 第三个元素是
<F>
为假的时候,s-exp
的求值结果。
这里有一个语言设计的问题,是否有必要增加一个 boolean 的数据类型?什么
是真,什么是假?这里有很多让人难以捉摸的小细节。这个问题也是各种语言之
间争论很久的话题。为了简单,我们不在这个问题上展开讨论,我们不增加新的
数据类型,认为符号(symbol) true
是真,其他值都是假。
(define (eval exp env)
(cond (......
((if? exp) (eval-if exp env))
......
(else (error "Unknown expression type -- EVAL" exp))))
先看看 if?
的实现。
(define (if? exp) (tagged-list? exp 'if))
感谢逻辑分层的代码风格,if?
的实现的可读性就很好了。
我们看看关键的 eval-if
怎么实现的。
(define (eval-if exp env)
(if (true? (eval (if-predicate exp) env))
(eval (if-consequent exp) env)
(eval (if-alternative exp) env)))
这里有两点需要注意
- 递归调用,
eval-if
递归调用了eval
,可以看到递归调用的强大之处。 - 求值顺序。
“求值顺序” 是一门语言的一个重大的设计问题。不同的求值顺序,导致完全不同 的效果。这里我们注意到,如果求值条件为真,那么假的分支是不做求值的。如 果求值条件为假,那么真的分支是不会求职的。这种设计叫做短路求值 (short-circuit)。 主流语言都是这么设计的。求值顺序是一个很重要的课题, 这里不展开讨论。
看看其他辅助函数如何实现的。这里再次应用了逻辑分层的代码风格。
(define (if-predicate exp) (cadr exp))
(define (if-consequent exp) (caddr exp))
(define (if-alternative exp)
(if (not (null? (cdddr exp)))
(cadddr exp)
'false))
(define (true? exp)
(eq? exp 'true))
我们看看程序的执行效果
> (eval '(if (quote true) 1 2) '())
1
> (eval '(if (quote false) 1 2) '())
2
非常好。 这里是完整的代码
(define true #t)
(define false #f)
(define (eval exp env)
(cond ((self-evaluating? exp) exp)
((quoted? exp) (text-of-quotation exp))
((if? exp) (eval-if exp env))
(else (error "Unknown expression type -- EVAL" exp))))
(define (self-evaluating? exp)
(cond ((number? exp) true)
((string? exp) true)
(else false)))
(define (if? exp) (tagged-list? exp 'if))
(define (eval-if exp env)
(if (true? (eval (if-predicate exp) env))
(eval (if-consequent exp) env)
(eval (if-alternative exp) env)))
(define (if-predicate exp) (cadr exp))
(define (if-consequent exp) (caddr exp))
(define (if-alternative exp)
(if (not (null? (cdddr exp)))
(cadddr exp)
'false))
(define (true? exp)
(eq? exp 'true))
(define (quoted? exp)
(tagged-list? exp 'quote))
(define (text-of-quotation exp) (cadr exp))
(define (tagged-list? exp tag)
(if (pair? exp)
(eq? (car exp) tag)
false))
代码块求值
这个功能是一个很方便的功能。如果 <s-exp>
是下面的形式
(begin <E1> <E2> .... <En>)
那么我们对 E1 , E2 ,.... , En 分别求值,整个表达式的值就是 En 的求值结果。
(define (eval exp env)
(cond (.......
((begin? exp)
(eval-sequence (begin-actions exp) env))
......
看看关键函数 eval-sequence
的实现
(define (eval-sequence exps env)
(cond ((last-exp? exps) (eval (first-exp exps) env))
(else (eval (first-exp exps) env)
(eval-sequence (rest-exps exps) env))))
这里注意
- 求值顺序
- 递归调用
eval
- 中间的表达式的求值结果被丢弃了
看看其他几个辅助函数的实现
(define (begin? exp) (tagged-list? exp 'begin))
(define (begin-actions exp) (cdr exp))
(define (last-exp? seq) (null? (cdr seq)))
(define (first-exp seq) (car seq))
(define (rest-exps seq) (cdr seq))
看看程序的执行效果
> (load "eval3.scm")
> (eval '(begin 1 2) '())
下面是完整的程序代码
(define true #t)
(define false #f)
(define (eval exp env)
(cond ((self-evaluating? exp) exp)
((quoted? exp) (text-of-quotation exp))
((if? exp) (eval-if exp env))
((begin? exp)
(eval-sequence (begin-actions exp) env))
(else (error "Unknown expression type -- EVAL" exp))))
(define (self-evaluating? exp)
(cond ((number? exp) true)
((string? exp) true)
(else false)))
(define (if? exp) (tagged-list? exp 'if))
(define (eval-if exp env)
(if (true? (eval (if-predicate exp) env))
(eval (if-consequent exp) env)
(eval (if-alternative exp) env)))
(define (if-predicate exp) (cadr exp))
(define (if-consequent exp) (caddr exp))
(define (if-alternative exp)
(if (not (null? (cdddr exp)))
(cadddr exp)
'false))
(define (true? exp)
(eq? exp 'true))
(define (eval-sequence exps env)
(cond ((last-exp? exps) (eval (first-exp exps) env))
(else (eval (first-exp exps) env)
(eval-sequence (rest-exps exps) env))))
(define (begin? exp) (tagged-list? exp 'begin))
(define (begin-actions exp) (cdr exp))
(define (last-exp? seq) (null? (cdr seq)))
(define (first-exp seq) (car seq))
(define (rest-exps seq) (cdr seq))
(define (quoted? exp)
(tagged-list? exp 'quote))
(define (text-of-quotation exp) (cadr exp))
(define (tagged-list? exp tag)
(if (pair? exp)
(eq? (car exp) tag)
false))
函数的求值
什么是函数表达式,其实就是著名的 lambda 表达式。lambda 表达式格式如下
(lambda <PARAM-LIST> <FUN-BODY>)
PARAM-LIST
是一个变量列表,引入变量的作用域,也叫环境。我们在求值
FUN-BODY
的时候,就在最内层的环境开始,有里向外的搜索变量。重名的时
候,内层变量先起作用,就这个就是所谓的阴影效果 (shadow) 。
求值一个 lambda 表达式的时候,返回值就是一个 “函数” 。
程序内部,如何表达一个函数呢?这也是一个重大的语言设计问题。编译型还是 解释型?目标语言的选择,字节码,还是机器码,还是其他的中间语言?
我们这个简单的语言中,我们就用 list 来表示。
(define (make-procedure parameters body env)
(list 'procedure parameters body env))
(define (procedure-parameters p) (cadr p))
(define (procedure-body p) (caddr p))
(define (procedure-environment p) (cadddr p))
看看执行效果
> (make-procedure '(a b) 'a '())
(procedure (a b) a ())
> (set! p1 (make-procedure '(a b) 'a '()))
> (procedure-parameters p1)
(a b)
> (procedure-body p1)
a
> (procedure-env p1)
> (procedure-environment p1)
()
可见一个函数有三个元素,参数列表,函数体,和环境。环境这个概念一直没有 详细解释,再推到下面解释。
那么,我们先实现一个 lambda 表达式的解析。
(define (eval exp env)
(cond (.......
((lambda? exp)
(make-procedure (lambda-parameters exp)
(lambda-body exp)
env))
......
其他几个辅助函数的实现
(define (lambda? exp) (tagged-list? exp 'lambda))
(define (lambda-parameters exp) (cadr exp))
(define (lambda-body exp) (cddr exp))
(define (make-procedure parameters body env)
(list 'procedure parameters body env))
看看执行效果
> (lambda? '(lambda 1))
#f
> (lambda-parameters '(lambda (a b) (+ a b)))
(a b)
> (lambda-body '(lambda (a b) (+ a b)))
((+ a b))
> (make-procedure '(a b) '((+ a b)) '())
(procedure (a b) ((+ a b)) ())
> (eval '(lambda (a b) (+ a b)) '())
(procedure (a b) ((+ a b)) ())
太好了,我们可以解析 lambda 表达式了。
这里是完整的代码
(define true #t)
(define false #f)
(define (eval exp env)
(cond ((self-evaluating? exp) exp)
((quoted? exp) (text-of-quotation exp))
((if? exp) (eval-if exp env))
((begin? exp)
(eval-sequence (begin-actions exp) env))
((lambda? exp)
(make-procedure (lambda-parameters exp)
(lambda-body exp)
env))
(else (error "Unknown expression type -- EVAL" exp))))
(define (self-evaluating? exp)
(cond ((number? exp) true)
((string? exp) true)
(else false)))
(define (if? exp) (tagged-list? exp 'if))
(define (eval-if exp env)
(if (true? (eval (if-predicate exp) env))
(eval (if-consequent exp) env)
(eval (if-alternative exp) env)))
(define (if-predicate exp) (cadr exp))
(define (if-consequent exp) (caddr exp))
(define (if-alternative exp)
(if (not (null? (cdddr exp)))
(cadddr exp)
'false))
(define (true? exp)
(eq? exp 'true))
(define (lambda? exp) (tagged-list? exp 'lambda))
(define (lambda-parameters exp) (cadr exp))
(define (lambda-body exp) (cddr exp))
(define (make-procedure parameters body env)
(list 'procedure parameters body env))
(define (procedure-parameters p) (cadr p))
(define (procedure-body p) (caddr p))
(define (procedure-environment p) (cadddr p))
(define (eval-sequence exps env)
(cond ((last-exp? exps) (eval (first-exp exps) env))
(else (eval (first-exp exps) env)
(eval-sequence (rest-exps exps) env))))
(define (begin? exp) (tagged-list? exp 'begin))
(define (begin-actions exp) (cdr exp))
(define (last-exp? seq) (null? (cdr seq)))
(define (first-exp seq) (car seq))
(define (rest-exps seq) (cdr seq))
(define (quoted? exp)
(tagged-list? exp 'quote))
(define (text-of-quotation exp) (cadr exp))
(define (tagged-list? exp tag)
(if (pair? exp)
(eq? (car exp) tag)
false))
函数调用与变量
刚刚我们定义了一个函数,但是并没有什么用处,我们看看什么是函数调用 (apply)。
(<L> <A1> <A2> ... <An>)
看看怎么解析这个函数调用型的 s-exp
。
- 首先,
L
是一个表达式,求值结果是一个函数 - 然后,
A1
是一个表达式,求值结果是任意值 - 之后,依次求值
A2
...An
- 之后,绑定 (bind)
A1
...An
的值,到L
的环境中。 - 最后,对
L
的函数体求值。并返回结果
这里需要有两个注意的事项
- 求值顺序
- 递归调用
- 变量绑定
这是一门语言最核心的部分了。求值顺序。我似乎提到求值顺序很多次了。这里 选择了大多数主流语言的设计。
参数的求值顺序也很重要,有的语言为了性能,不定义参数的求值顺序。
第二个问题就是阴阳大法的互递归调用。apply 不停地调用 eval 得到函数对象, 和参数,绑定参数,然后调用 eval 求值函数体。而 apply 的处理,正式 eval 函数中的重要组成部分。
第三个问题就是变量的作用域的问题。变量的作用域也是一个重大的语言设计问 题。不同的语言有不同的设计,展现了不同语言丰富的表达能力。现在主流语言 是“词法作用域” (lexical scope) 。我们选择的是一个简单的词法作用域的实 现。
这里也需要注意参数的求值环境是在当前环境,而函数体的求值环境,是参数绑 定之后的新环境。
什么是求值环境?求值环境就是一个变量名称到变量值的映射关系。
什么是闭包(closure) ? 闭包也是一个环境,就是在生成一个函数的时候,当时 的环境。
什么是帧 (frame) ? 就是函数调用的时候,绑定参数生成的环境。
这就是说环境是一个动态的数状结构(递归结构)。在求值一个函数的函数体的 时候,碰到变量求值,会递归搜索闭包,这样除了参数绑定产生的本地环境之外, 还需要搜索闭包。
我们先实现 frame 。
(define (make-frame variables values)
(cons variables values))
(define (frame-variables frame) (car frame))
(define (frame-values frame) (cdr frame))
看看运行效果
> (set! f1 (make-frame '(a b c) '(1 2 3)))
> (frame-variables f1)
(a b c)
> (frame-values f1)
(1 2 3)
我们再实现 env 。
(define (extend-environment vars vals base-env)
(if (= (length vars) (length vals))
(cons (make-frame vars vals) base-env)
(if (< (length vars) (length vals))
(error "Too many arguments supplied" vars vals)
(error "Too few arguments supplied" vars vals))))
(define (enclosing-environment env) (cdr env))
(define (first-frame env) (car env))
(define the-empty-environment '())
看看执行效果
> (set! e1 (extend-environment '(a b c) '(1 2 3) the-empty-environment)))
> e1
(((a b c) 1 2 3))
> (enclosing-environment e1)
()
> (set! e2 (extend-environment '(x y z) '(10 20 30) e1))
> e2
(((x y z) 10 20 30) ((a b c) 1 2 3))
> (enclosing-environment e2)
(((a b c) 1 2 3))
我们再实现一个变量查找的功能
(define (lookup-variable-value var env)
(define (env-loop env)
(define (scan vars vals)
(cond ((null? vars)
(env-loop (enclosing-environment env)))
((eq? var (car vars))
(car vals))
(else (scan (cdr vars) (cdr vals)))))
(if (eq? env the-empty-environment)
(error "Unbound variable" var)
(let ((frame (first-frame env)))
(scan (frame-variables frame)
(frame-values frame)))))
(env-loop env))
我们看看执行效果
> (lookup-variable-value 'x e2)
10
> (lookup-variable-value 'y e2)
20
> (lookup-variable-value 'a e1)
1
> (lookup-variable-value 'a e2)
1
> (lookup-variable-value 'u e2)
Exception: Unbound variable with irritant u
Type (debug) to enter the debugger.
有了这些,我们可以实现变量的求值了。
(define (eval exp env)
(cond (.......
((variable? exp) (lookup-variable-value exp env))
......
看看执行效果
> (eval 'a e1)
1
> (eval 'b e1)
2
> (eval 'c e1)
3
> (eval 'a e2)
1
> (eval 'b e2)
2
> (eval 'c e2)
3
> (eval 'x e2)
10
> (eval 'y e2)
20
> (eval 'z e2)
30
辅助函数的实现
(define (variable? exp) (symbol? exp))
我们继续,有了这些,我们可以实现 apply 的解析了
(define (eval exp env)
(cond (.......
((application? exp)
(apply (eval (operator exp) env)
(list-of-values (operands exp) env)))
......
看看一些辅助函数的实现
(define (application? exp) (pair? exp))
(define (operator exp) (car exp))
(define (operands exp) (cdr exp))
(define (no-operands? ops) (null? ops))
(define (first-operand ops) (car ops))
(define (rest-operands ops) (cdr ops))
(define (list-of-values exps env)
(if (no-operands? exps)
'()
(cons (eval (first-operand exps) env)
(list-of-values (rest-operands exps) env))))
看看执行效果
> (eval '((lambda (a b) a) 1 2) '())
1
> (eval '((lambda (a b) b) 1 2) '())
2
>
下面是完整的代码
(define true #t)
(define false #f)
(define (eval exp env)
(cond ((self-evaluating? exp) exp)
((quoted? exp) (text-of-quotation exp))
((if? exp) (eval-if exp env))
((begin? exp)
(eval-sequence (begin-actions exp) env))
((lambda? exp)
(make-procedure (lambda-parameters exp)
(lambda-body exp)
env))
((variable? exp) (lookup-variable-value exp env))
((application? exp)
(apply (eval (operator exp) env)
(list-of-values (operands exp) env)))
(else (error #f "Unknown expression type -- EVAL" exp))))
(define (self-evaluating? exp)
(cond ((number? exp) true)
((string? exp) true)
(else false)))
(define (if? exp) (tagged-list? exp 'if))
(define (eval-if exp env)
(if (true? (eval (if-predicate exp) env))
(eval (if-consequent exp) env)
(eval (if-alternative exp) env)))
(define (if-predicate exp) (cadr exp))
(define (if-consequent exp) (caddr exp))
(define (if-alternative exp)
(if (not (null? (cdddr exp)))
(cadddr exp)
'false))
(define (true? exp)
(eq? exp 'true))
(define (lambda? exp) (tagged-list? exp 'lambda))
(define (lambda-parameters exp) (cadr exp))
(define (lambda-body exp) (cddr exp))
(define (make-procedure parameters body env)
(list 'procedure parameters body env))
(define (procedure-parameters p) (cadr p))
(define (procedure-body p) (caddr p))
(define (procedure-environment p) (cadddr p))
(define (apply procedure arguments)
(eval-sequence
(procedure-body procedure)
(extend-environment
(procedure-parameters procedure)
arguments
(procedure-environment procedure))))
(define (extend-environment vars vals base-env)
(if (= (length vars) (length vals))
(cons (make-frame vars vals) base-env)
(if (< (length vars) (length vals))
(error "Too many arguments supplied" vars vals)
(error "Too few arguments supplied" vars vals))))
(define (make-frame variables values)
(cons variables values))
(define (frame-variables frame) (car frame))
(define (frame-values frame) (cdr frame))
(define (extend-environment vars vals base-env)
(if (= (length vars) (length vals))
(cons (make-frame vars vals) base-env)
(if (< (length vars) (length vals))
(error "Too many arguments supplied" vars vals)
(error "Too few arguments supplied" vars vals))))
(define (enclosing-environment env) (cdr env))
(define (first-frame env) (car env))
(define the-empty-environment '())
(define (lookup-variable-value var env)
(define (env-loop env)
(define (scan vars vals)
(cond ((null? vars)
(env-loop (enclosing-environment env)))
((eq? var (car vars))
(car vals))
(else (scan (cdr vars) (cdr vals)))))
(if (eq? env the-empty-environment)
(error #f "Unbound variable" var)
(let ((frame (first-frame env)))
(scan (frame-variables frame)
(frame-values frame)))))
(env-loop env))
(define (variable? exp) (symbol? exp))
(define (application? exp) (pair? exp))
(define (operator exp) (car exp))
(define (operands exp) (cdr exp))
(define (no-operands? ops) (null? ops))
(define (first-operand ops) (car ops))
(define (rest-operands ops) (cdr ops))
(define (list-of-values exps env)
(if (no-operands? exps)
'()
(cons (eval (first-operand exps) env)
(list-of-values (rest-operands exps) env))))
(define (eval-sequence exps env)
(cond ((last-exp? exps) (eval (first-exp exps) env))
(else (eval (first-exp exps) env)
(eval-sequence (rest-exps exps) env))))
(define (begin? exp) (tagged-list? exp 'begin))
(define (begin-actions exp) (cdr exp))
(define (last-exp? seq) (null? (cdr seq)))
(define (first-exp seq) (car seq))
(define (rest-exps seq) (cdr seq))
(define (quoted? exp)
(tagged-list? exp 'quote))
(define (text-of-quotation exp) (cadr exp))
(define (tagged-list? exp tag)
(if (pair? exp)
(eq? (car exp) tag)
false))
内置函数
我们有了语言的核心,但是这个语言还没什么用,因为连基本的加减乘除都做不 了。我们利用宿主语言提供的功能,实现一些基本的内置函数。
首先我们要区分内置函数和语言自己的函数。我们用 primitive
来标记内置函数。
(define (primitive-procedure? proc)
(tagged-list? proc 'primitive))
primitive 函数有一个属性,就是底层的函数实现。
(define (primitive-implementation proc) (cadr proc))
我们预先定义下面这些内置函数
(define primitive-procedures
(list (list 'car car)
(list 'cdr cdr)
(list 'cons cons)
(list 'null? null?)
...
))
我们初始化语言的初始环境
(define (primitive-procedure-names)
(map car
primitive-procedures))
(define (primitive-procedure-objects)
(map (lambda (proc) (list 'primitive (cadr proc)))
primitive-procedures))
(define (setup-environment)
(let ((initial-env
(extend-environment (primitive-procedure-names)
(primitive-procedure-objects)
the-empty-environment)))
initial-env))
(define the-global-environment (setup-environment))
看看执行效果
> (load "eval6.scm")
> the-global-environment
(((car cdr cons null?)
(primitive #<procedure car>)
(primitive #<procedure cdr>)
(primitive #<procedure cons>)
(primitive #<procedure null?>)))
对应的 apply
函数需要修改,这样才能调用内置函数。
(define (apply procedure arguments)
(cond ((primitive-procedure? procedure)
(apply-primitive-procedure procedure arguments))
((compound-procedure? procedure)
(eval-sequence
(procedure-body procedure)
(extend-environment
(procedure-parameters procedure)
arguments
(procedure-environment procedure))))
(else
(error
"Unknown procedure type -- APPLY" procedure))))
看看其他几个辅助函数的实现
(define (compound-procedure? p) (tagged-list? p 'procedure))
(define (apply-primitive-procedure proc args)
(apply-in-underlying-scheme
(primitive-implementation proc) args))
(define apply-in-underlying-scheme apply)
看看执行效果
> (eval 'car the-global-environment)
(primitive #<procedure car>)
> (apply-primitive-procedure (eval 'car the-global-environment) '((1 2)))
1
> (eval '(car '(1 2)) the-global-environment)
1
> (eval '(display "hello world") the-global-environment)
hello world
>
这里有一个坑,apply
已经在宿主语言中有定义了,所有我们要换一个名字,
防止名字冲突。并且用 apply-primitive-procedure
强调我们调用的是宿主
语言的 apply 函数。
(define apply-in-underlying-scheme (top-level-value 'apply (scheme-environment)))
我们的语言居然可以输出 "hello world" 了。下面是完整的代码。
(define apply-in-underlying-scheme (top-level-value 'apply (scheme-environment)))
(define true #t)
(define false #f)
(define (eval exp env)
(cond ((self-evaluating? exp) exp)
((quoted? exp) (text-of-quotation exp))
((if? exp) (eval-if exp env))
((begin? exp)
(eval-sequence (begin-actions exp) env))
((lambda? exp)
(make-procedure (lambda-parameters exp)
(lambda-body exp)
env))
((variable? exp) (lookup-variable-value exp env))
((application? exp)
(apply (eval (operator exp) env)
(list-of-values (operands exp) env)))
(else (error #f "Unknown expression type -- EVAL" exp))))
(define (self-evaluating? exp)
(cond ((number? exp) true)
((string? exp) true)
(else false)))
(define (if? exp) (tagged-list? exp 'if))
(define (eval-if exp env)
(if (true? (eval (if-predicate exp) env))
(eval (if-consequent exp) env)
(eval (if-alternative exp) env)))
(define (if-predicate exp) (cadr exp))
(define (if-consequent exp) (caddr exp))
(define (if-alternative exp)
(if (not (null? (cdddr exp)))
(cadddr exp)
'false))
(define (true? exp)
(eq? exp 'true))
(define (lambda? exp) (tagged-list? exp 'lambda))
(define (lambda-parameters exp) (cadr exp))
(define (lambda-body exp) (cddr exp))
(define (make-procedure parameters body env)
(list 'procedure parameters body env))
(define (compound-procedure? p) (tagged-list? p 'procedure))
(define (procedure-parameters p) (cadr p))
(define (procedure-body p) (caddr p))
(define (procedure-environment p) (cadddr p))
(define (apply procedure arguments)
(cond ((primitive-procedure? procedure)
(apply-primitive-procedure procedure arguments))
((compound-procedure? procedure)
(eval-sequence
(procedure-body procedure)
(extend-environment
(procedure-parameters procedure)
arguments
(procedure-environment procedure))))
(else
(error
"Unknown procedure type -- APPLY" procedure))))
(define (extend-environment vars vals base-env)
(if (= (length vars) (length vals))
(cons (make-frame vars vals) base-env)
(if (< (length vars) (length vals))
(error "Too many arguments supplied" vars vals)
(error "Too few arguments supplied" vars vals))))
(define (make-frame variables values)
(cons variables values))
(define (frame-variables frame) (car frame))
(define (frame-values frame) (cdr frame))
(define (extend-environment vars vals base-env)
(if (= (length vars) (length vals))
(cons (make-frame vars vals) base-env)
(if (< (length vars) (length vals))
(error "Too many arguments supplied" vars vals)
(error "Too few arguments supplied" vars vals))))
(define (enclosing-environment env) (cdr env))
(define (first-frame env) (car env))
(define the-empty-environment '())
(define (lookup-variable-value var env)
(define (env-loop env)
(define (scan vars vals)
(cond ((null? vars)
(env-loop (enclosing-environment env)))
((eq? var (car vars))
(car vals))
(else (scan (cdr vars) (cdr vals)))))
(if (eq? env the-empty-environment)
(error #f "Unbound variable" var)
(let ((frame (first-frame env)))
(scan (frame-variables frame)
(frame-values frame)))))
(env-loop env))
(define (primitive-procedure? proc)
(tagged-list? proc 'primitive))
(define primitive-procedures
(list (list 'car car)
(list 'cdr cdr)
(list 'cons cons)
(list 'null? null?)
(list 'display display)
))
(define (primitive-implementation proc) (cadr proc))
(define (primitive-procedure-names)
(map car
primitive-procedures))
(define (apply-primitive-procedure proc args)
(apply-in-underlying-scheme
(primitive-implementation proc) args))
(define (primitive-procedure-objects)
(map (lambda (proc) (list 'primitive (cadr proc)))
primitive-procedures))
(define (setup-environment)
(let ((initial-env
(extend-environment (primitive-procedure-names)
(primitive-procedure-objects)
the-empty-environment)))
initial-env))
(define the-global-environment (setup-environment))
(define (variable? exp) (symbol? exp))
(define (application? exp) (pair? exp))
(define (operator exp) (car exp))
(define (operands exp) (cdr exp))
(define (no-operands? ops) (null? ops))
(define (first-operand ops) (car ops))
(define (rest-operands ops) (cdr ops))
(define (list-of-values exps env)
(if (no-operands? exps)
'()
(cons (eval (first-operand exps) env)
(list-of-values (rest-operands exps) env))))
(define (eval-sequence exps env)
(cond ((last-exp? exps) (eval (first-exp exps) env))
(else (eval (first-exp exps) env)
(eval-sequence (rest-exps exps) env))))
(define (begin? exp) (tagged-list? exp 'begin))
(define (begin-actions exp) (cdr exp))
(define (last-exp? seq) (null? (cdr seq)))
(define (first-exp seq) (car seq))
(define (rest-exps seq) (cdr seq))
(define (quoted? exp)
(tagged-list? exp 'quote))
(define (text-of-quotation exp) (cadr exp))
(define (tagged-list? exp tag)
(if (pair? exp)
(eq? (car exp) tag)
false))
定义变量(define) 和变量赋值(set!),还有 cond
这些都不是语言最核心的部分。这里给出完整的代码。
看看效果
> (eval '(begin (define a 10) a) the-global-environment)
10
> (eval '(begin (define a 10) (display a)) the-global-environment)
10
> (eval '(begin (define a 10) (+ a 100)) the-global-environment)
110
> (eval '(begin (define a 10) (set! a 1) (+ a 100)) the-global-environment)
101
最后完整的代码
;; 和宿主语言的交互
(define apply-in-underlying-scheme (top-level-value 'apply (scheme-environment)))
(define true #t)
(define false #f)
;; 语言的核心入口
(define (eval exp env)
(cond ((self-evaluating? exp) exp)
((variable? exp) (lookup-variable-value exp env))
((quoted? exp) (text-of-quotation exp))
((assignment? exp) (eval-assignment exp env))
((definition? exp) (eval-definition exp env))
((if? exp) (eval-if exp env))
((lambda? exp)
(make-procedure (lambda-parameters exp)
(lambda-body exp)
env))
((begin? exp)
(eval-sequence (begin-actions exp) env))
((cond? exp) (eval (cond->if exp) env))
((application? exp)
(apply (eval (operator exp) env)
(list-of-values (operands exp) env)))
(else
(error "Unknown expression type -- EVAL" exp))))
;; 简单的类型
(define (self-evaluating? exp)
(cond ((number? exp) true)
((string? exp) true)
(else false)))
;; 关于 quote
(define (quoted? exp)
(tagged-list? exp 'quote))
(define (text-of-quotation exp) (cadr exp))
;; 关于代码块
(define (begin? exp) (tagged-list? exp 'begin))
(define (eval-sequence exps env)
(cond ((last-exp? exps) (eval (first-exp exps) env))
(else (eval (first-exp exps) env)
(eval-sequence (rest-exps exps) env))))
(define (begin-actions exp) (cdr exp))
(define (last-exp? seq) (null? (cdr seq)))
(define (first-exp seq) (car seq))
(define (rest-exps seq) (cdr seq))
;; 支持 if 条件判断
(define (if? exp) (tagged-list? exp 'if))
(define (eval-if exp env)
(if (true? (eval (if-predicate exp) env))
(eval (if-consequent exp) env)
(eval (if-alternative exp) env)))
(define (if-predicate exp) (cadr exp))
(define (if-consequent exp) (caddr exp))
(define (if-alternative exp)
(if (not (null? (cdddr exp)))
(cadddr exp)
'false))
(define (true? exp)
(eq? exp 'true))
;; 支持 lambda 函数定义
(define (lambda? exp) (tagged-list? exp 'lambda))
(define (lambda-parameters exp) (cadr exp))
(define (lambda-body exp) (cddr exp))
(define (make-procedure parameters body env)
(list 'procedure parameters body env))
(define (compound-procedure? p) (tagged-list? p 'procedure))
(define (procedure-parameters p) (cadr p))
(define (procedure-body p) (caddr p))
(define (procedure-environment p) (cadddr p))
;; 关于环境的定义
(define (extend-environment vars vals base-env)
(if (= (length vars) (length vals))
(cons (make-frame vars vals) base-env)
(if (< (length vars) (length vals))
(error "Too many arguments supplied" vars vals)
(error "Too few arguments supplied" vars vals))))
(define (make-frame variables values)
(cons variables values))
(define (frame-variables frame) (car frame))
(define (frame-values frame) (cdr frame))
(define (extend-environment vars vals base-env)
(if (= (length vars) (length vals))
(cons (make-frame vars vals) base-env)
(if (< (length vars) (length vals))
(error "Too many arguments supplied" vars vals)
(error "Too few arguments supplied" vars vals))))
(define (add-binding-to-frame! var val frame)
(set-car! frame (cons var (car frame)))
(set-cdr! frame (cons val (cdr frame))))
(define (enclosing-environment env) (cdr env))
(define (first-frame env) (car env))
(define primitive-procedures
(list (list 'car car)
(list 'cdr cdr)
(list 'cons cons)
(list 'null? null?)
(list '+ +)
(list '- -)
(list '* *)
(list '/ /)
(list 'display display)
))
(define (primitive-procedure-names)
(map car
primitive-procedures))
(define (primitive-procedure-objects)
(map (lambda (proc) (list 'primitive (cadr proc)))
primitive-procedures))
(define (setup-environment)
(let ((initial-env
(extend-environment (primitive-procedure-names)
(primitive-procedure-objects)
the-empty-environment)))
initial-env))
(define the-empty-environment '())
(define the-global-environment (setup-environment))
;; 关于变量
(define (variable? exp) (symbol? exp))
(define (lookup-variable-value var env)
(define (env-loop env)
(define (scan vars vals)
(cond ((null? vars)
(env-loop (enclosing-environment env)))
((eq? var (car vars))
(car vals))
(else (scan (cdr vars) (cdr vals)))))
(if (eq? env the-empty-environment)
(error #f "Unbound variable" var)
(let ((frame (first-frame env)))
(scan (frame-variables frame)
(frame-values frame)))))
(env-loop env))
;; 关于 apply 的相关函数
(define (application? exp) (pair? exp))
(define (apply procedure arguments)
(cond ((primitive-procedure? procedure)
(apply-primitive-procedure procedure arguments))
((compound-procedure? procedure)
(eval-sequence
(procedure-body procedure)
(extend-environment
(procedure-parameters procedure)
arguments
(procedure-environment procedure))))
(else
(error
"Unknown procedure type -- APPLY" procedure))))
(define (primitive-procedure? proc)
(tagged-list? proc 'primitive))
(define (primitive-implementation proc) (cadr proc))
(define (apply-primitive-procedure proc args)
(apply-in-underlying-scheme
(primitive-implementation proc) args))
(define (operator exp) (car exp))
(define (operands exp) (cdr exp))
(define (no-operands? ops) (null? ops))
(define (first-operand ops) (car ops))
(define (rest-operands ops) (cdr ops))
(define (list-of-values exps env)
(if (no-operands? exps)
'()
(cons (eval (first-operand exps) env)
(list-of-values (rest-operands exps) env))))
;; 关于 define
(define (definition? exp)
(tagged-list? exp 'define))
(define (definition-variable exp)
(if (symbol? (cadr exp))
(cadr exp)
(caadr exp)))
(define (definition-value exp)
(if (symbol? (cadr exp))
(caddr exp)
(make-lambda (cdadr exp) ; formal parameters
(cddr exp)))) ; body
(define (eval-definition exp env)
(define-variable! (definition-variable exp)
(eval (definition-value exp) env)
env)
'ok)
(define (define-variable! var val env)
(let ((frame (first-frame env)))
(define (scan vars vals)
(cond ((null? vars)
(add-binding-to-frame! var val frame))
((eq? var (car vars))
(set-car! vals val))
(else (scan (cdr vars) (cdr vals)))))
(scan (frame-variables frame)
(frame-values frame))))
;; 关于 set!
(define (assignment? exp)
(tagged-list? exp 'set!))
(define (assignment-variable exp) (cadr exp))
(define (assignment-value exp) (caddr exp))
(define (eval-assignment exp env)
(set-variable-value! (assignment-variable exp)
(eval (assignment-value exp) env)
env)
'ok)
(define (set-variable-value! var val env)
(define (env-loop env)
(define (scan vars vals)
(cond ((null? vars)
(env-loop (enclosing-environment env)))
((eq? var (car vars))
(set-car! vals val))
(else (scan (cdr vars) (cdr vals)))))
(if (eq? env the-empty-environment)
(error "Unbound variable -- SET!" var)
(let ((frame (first-frame env)))
(scan (frame-variables frame)
(frame-values frame)))))
(env-loop env))
;; 关于 cond!
(define (cond? exp) (tagged-list? exp 'cond))
(define (cond-clauses exp) (cdr exp))
(define (cond-else-clause? clause)
(eq? (cond-predicate clause) 'else))
(define (cond-predicate clause) (car clause))
(define (cond-actions clause) (cdr clause))
(define (cond->if exp)
(expand-clauses (cond-clauses exp)))
(define (expand-clauses clauses)
(if (null? clauses)
'false ; no else clause
(let ((first (car clauses))
(rest (cdr clauses)))
(if (cond-else-clause? first)
(if (null? rest)
(sequence->exp (cond-actions first))
(error "ELSE clause isn't last -- COND->IF"
clauses))
(make-if (cond-predicate first)
(sequence->exp (cond-actions first))
(expand-clauses rest))))))
;; 底层函数
(define (tagged-list? exp tag)
(if (pair? exp)
(eq? (car exp) tag)
false))
其他
这个解释器,看起来简单,其实已经支持了大多数核心功能了,甚至包括闭包的 实现。一门语言还有其他一些重要的特性需要仔细设计。
- 模块系统
- 内存管理 gc
- 代码生成优化
- 调试器
- 调优器
- 特色功能
- 是否支持 continuation
- 是否支持 coroutine
- 是否支持 thread
- 是否支持 macro
- 是否支持 类型推导
- 是否支持 OO
- 是否支持 泛型
- 是否支持 generator/iterator
- 标准库设计
- Network/File IO
- 基础数据类型库
- List
- Array
- Map
- Hash
- Set